Report on

Crop Coefficient, District and Taluka wise Water and Irrigation Requirement of Western Maharashtra by Different Irrigation Practices for Sesame, Gram and Fodder Bajra based on FAO 56 Method from standard FAO Crop Coefficients

in

"Determination of Crop Coefficients for Major Crops by Lysimetric Studies"

at

Mahatma Phule Krishi Vidyapeeth, Rahuri

Title of the project: "Determination of Crop Coefficients for Major Crops by Lysimetric Studies"								
Location: CAAST- CSAWM Climate smart research block, Mahatma Phule Krishi Vidyapeeth, Rahuri								
Duration: Three years (2020-20)	23)							
Total Outlay: Rs. 31.43 Lakhs (Rs. Thirty one lakh fourty three thousand only)							
Investigators:								
Principal Investigator :	Dr. A. A. Atre, Professor of SWCE and CAAST- CSAWM Member and Dr. ASCAE&T, MPKV, Rahuri							
Co-Principal Investigator :	Dr. M. G. Shinde, Professor of SWCE and Co-PI CAAST- CSAWM, MPKV, Rahuri							
	Dr. S. A. Kadam, Associate Professor of IDE, CAAST- CSAWM, MPKV, Rahuri							
Coordinator for the project :	Dr. S. D. Gorantiwar, Head, Dept. of Agril. Engg. and PI							
forthreeuniversities(MPKV, Rahuri; Dr. PDKV,AkolaandVNMKV,Parbhani)	CAAST- CSAWM, MPKV, Rahuri							

Activities Completed:

1. Data Collection: Meteorological Data, Crop Data

- i) The meteorological parameters required for the estimation of reference crop evapotranspiration for Rahuri region were collected for previous 47 years (1975-2021) such as
 - Temperature (Minimum and Maximum)
 - Relative Humidity (Minimum and Maximum)
 - Wind Speed at 2 m height from ground surface
 - Bright Sunshine Hours
 - Rainfall
- ii) Crop data of Sesame (JLT 408) Gram (Phule Vikram) and Fodder Bajra was recorded daily and made required corrections.
- iii) The height of crop at four growth stages were recorded.

2. Estimation Reference Crop Evapotranspiration ET_r by Penman-Monteith Method

The following formula is used for estimation of ET_r:

$$ET_r = \frac{0.408\Delta(R_n - G) + \gamma \frac{900}{T + 273}u_2(e_s - e_a)}{\Delta + \gamma(1 + 0.34u_2)} \qquad \dots \dots (i)$$

Where,

ETr : Reference evapotranspiration [mm/day],

 R_n : Net radiation at the crop surface [MJ/m² day],

G : Soil heat flux density [MJ/ m² day],

T: Mean daily air temperature at 2 m height [°C],

u2: Wind speed at 2 m height [m/s],

es : Saturation vapour pressure [kPa],

ea : Actual vapour pressure [kPa],

es - ea : Saturation vapour pressure deficit [kPa],

 Δ : Slope vapour pressure curve [kPa/ °C],

 γ : Psychrometric constant [kPa/°C].

3. Methodology for modification of Crop Coefficients for local conditions

For modification of K_c values at local condition it is required to have the data related to soil type, wetting event and crop height at mid and end growth stage. Figure 1 shows the flow chart of methodology used for modification of K_c at initial, mid and end stages during crop growth period.

Figure 1: Methodology flowchart for modification of K_c

The soil type of Rahuri region where the experiment are taken is having fine and medium texture, therefore the irrigation interval was considered as 10 days. These values are considered for modification of initial value of crop coefficient, K_{cini}.

4. FAO 56 Crop Coefficients

The standard values for K_c given by FAO are taken and modified using the methodology presented in Figure 1.

5. Estimation of K_c for Local Conditions based on Modification in FAO standard K_c table

Daily ET_r is estimated for all the years and averaged for each day for period of 47 years from 1975 - 2021. Averaged ET_r is used for finding local K_c at initial growth stage (K_{cini}) from the reference graphs (figure 2) provided by FAO.

- K_c initial (K_{cini}): K_{cini} is taken from K_c vs ET_r graph provided in FAO-56 paper using averaged ET_r value for previous years, soil type/texture and wetting event for initial growth period.
- **K**_c mid: The following equation is used for estimation of K_c mid:

$$K_c \text{ mid} = K_c(\text{mid})_{FAO56} + [0.04(U_2-2)-0.004(RH_{min}-45)](h/3)^{0.3}$$
(ii)

• Kc end: The following equation is used for estimation of K_c end:

 $K_c \text{ end} = K_c(\text{end})_{FAO56} + [0.04(U_2-2)-0.004(RH_{min}-45)](h/3)^{0.3}$ (iii) Where,

 $K_c \text{ (mid)}_{FAO56} = \text{value of } K_c \text{ mid taken from FAO-56},$

K_c (end)_{FAO56}= value of K_c end taken from FAO-56,

U₂= Mean value for daily wind speed at 2m height, m/s

RH_{min}= Mean value for daily minimum relative humidity during the end season growth stage,

h = Mean plant height during end-season (m)

Figure 2: Average K_{cini} as related to the level of ETo and the interval between irrigation greater than or equal to 40 mm per wetting event, during the initial growth stage for a) coarse textured soil; b) medium and fine textured soils.

The crop height, minimum relative humidity and wind speed at 2 meter height required for estimation of K_c for mid and end season stages, was recorded for respective field/region and the weekly K_c values were developed. The curve of weekly K_c Vs t/T was plotted and a polynomial equation was fitted with maximum accuracy. Using this polynomial equation the daily K_c values for the crop were calculated.

Firstly, the week wise K_c values were developed. The curve for t/T and weekly K_c was plotted and a polynomial equation was derived of the curve with maximum

accuracy. Using this polynomial equation the daily K_c values for the crop were calculated.

i) Modified crop coefficient and water requirement of Sesame

The weekly crop coefficients for sesame crop under Rahuri region is presented in below Table 1and modified K_c values for initial, mid and end of growth stages are presented in Table 2. The crop coefficient (K_c) curve and polynomial equation of sesame crop are presented in Figure 3. From table 1; it is revealed that the crop coefficients for sesame were estimated to the range of 0.27 to 1.07.

Table 1: Weekly Kc values of Sesame considering crop period from 27thStandardMeteorological Week (SMW) to 40th Meteorological Week (MW) having cropperiod of 95 days (2ndJuly to 4thOct)

SMW	Week since sowing	Days	X= t/T	Avg.U ₂ km/h	Rh min, %	Crop height, m	Modified Kc
27	1	7	0.07	11.3	59	0.04	0.55
28	2	14	0.15	10.7	60	0.13	0.58
29	3	21	0.22	11.4	62	0.22	0.64
30	4	28	0.29	10.6	64	0.32	0.71
31	5	35	0.37	10.6	63	0.41	0.8
32	6	42	0.44	10.7	64	0.51	0.89
33	7	49	0.52	10	62	0.6	0.97
34	8	56	0.59	8.3	61	0.7	1.03
35	9	63	0.66	7.8	62	0.8	1.07
36	10	70	0.74	7.3	60	0.9	1.06
37	11	77	0.81	6	57	0.99	0.98
38	12	84	0.88	5.4	59	1.08	0.83
39	13	91	0.96	4.3	57	1.1	0.57
40	14	95	1	3.9	52	1.1	0.27

Table 2: Modified K_c values for initial, mid, end season of Sesame crop for Rahuri region

Crop: Sesame									
SMW	Sowing Date	FAO K _c Values Mod K _c Crop Period							
MW27- MW40	02 nd July, 2021	Kcini	0.35	0.28	Initial	20			
		Kc _{mid}	1.1	1.06	Development	25			
		Kc _{end}	0.25	0.19	Mid	35			
					Late	15			
					Total/Crop Period	95			

Figure 3: Modified K_c plots for each crop week for whole crop growth period of Sesame

Figure 4: Plot of days after sowing Vs. K_c derived from polynomial equation for crop growth period of Sesame on daily basis

The polynomial equation given in figure 3 is used for estimation of daily crop coefficients (figure 4) for Sesame crop. This polynomial relation between t/T and modified K_c has coefficient determination (R^2) of 0.997 representing nearly perfect correlation between them. Values of daily K_c of Sesame derived from equation (iv) are given in appendix A (Table A-1).

 $y = -2.2343x^5 + 3.1122x^4 - 5.4481x^3 + 4.4358x^2 - 0.242x + 0.5545$ (iv) Where, x is (t/T) and y is K_{ct} and

 K_{ct} = The crop coefficient of Sesame on tth day

- t = Day after sowing
- T = Total crop growth period in days

Total seasonal water requirement of Sesame in Rahuri region is found to be 293.51 mm. The average weekly water requirement and irrigation water requirement by surface, sprinkler and drip irrigation methods for different efficiencies ignoring effective rainfall of Sesame is presented in appendix B.

ii) Modified crop coefficient and water requirement of Gram

The weekly crop coefficients for gram crop for Rahuri region are presented in Table 3 and modified K_c values for initial, mid and end of growth stages are presented in Table 4. The crop coefficient (K_c) curve and polynomial equation of gram crop are presented in Figure 5. From table 3, it is revealed that the crop coefficients for gram were estimated to the range of 0.43 to 1.00.

Table 3: Weekly K_c values of Gram considering crop period from 44th Meteorological Week (MW) to 7thStandard Meteorological Week (SMW) having Crop Period of 110 days (29thOct to 15thFeb).

SMW	Week since sowing	Days	X= t/T	Avg.U ₂ km/h	Rh min %	Crop height, m	Modified Kc
44	1	7	0.06	3.5	39	0.02	0.60
45	2	14	0.13	3.4	39	0.08	0.62
46	3	21	0.19	3.3	42	0.13	0.65
47	4	28	0.25	3.1	39	0.17	0.70
48	5	35	0.32	2.9	38	0.2	0.76
49	6	42	0.38	2.9	38	0.23	0.82
50	7	49	0.45	2.9	36	0.26	0.88
51	8	56	0.51	2.8	35	0.29	0.93
52	9	63	0.57	2.8	36	0.32	0.97
01	10	70	0.64	2.9	35	0.36	1.00
02	11	77	0.70	3.1	36	0.39	0.99
03	12	84	0.76	3.2	34	0.42	0.96
04	13	91	0.83	3.2	33	0.44	0.90
05	14	98	0.89	3.4	31	0.45	0.79
06	15	105	0.95	3.6	29	0.45	0.62
07	16	110	1	3.8	28	0.45	0.44

Crop: Gram									
Variety: Phule Vikram									
Meteorologic Sowing FAO Kc Modified Crop Period									
al week	Date	v aiu	es	n _c					
MW44-MW7	29 th October , 2021	Kcini	0.4	0.62	Initial	20			
		Kcmid	1	1	Development	35			
		Kcend	0.35	0.36	Mid	35			
					Late	20			
					Total/Crop Period	110			

Table 4: Modified K_c values for initial, mid, end season of Gram crop for Rahuri region

Figure 5: Modified K_c plots for each crop week for whole crop growth period of Gram

The polynomial equation given in figure 5 is used for estimation of daily crop coefficients (figure 6) for Gram crop. This polynomial relation between t/T and modified K_c has coefficient determination (R^2) of 0.999 representing nearly perfect correlation between them. Values of daily K_c of Gram derived from equation (v) are given in appendix A (Table A-2).

 $y = -0.580x^5 + 0.863x^4 - 3.900x^3 + 3.587x^2 - 0.211x + 0.605$ (v) Where, x is (t/T) and y is K_{ct} and

 K_{ct} = The crop coefficient of Gram on tth day

t = Day after sowing

T = Total crop growth period in days

The water requirement is calculated using:

$ET_c = K_c \times ET_r$

Total seasonal water requirement of Gram in Rahuri region is found to be 285.83 mm. The average weekly water requirement and irrigation water requirement by surface, sprinkler and drip irrigation methods for different efficiencies ignoring effective rainfall of gram is presented in Appendix C.

iii) Modified Crop coefficients and water requirement of Fodder Bajra

The weekly crop coefficients for sesame crop under Rahuri region is presented in below Table 5 and modified K_c values for initial, mid and end of growth stages are presented in Table 6. The crop coefficient (Kc) curve and polynomial equation of fodder Bajra crop are presented in Figure 7. From table 5; it is revealed that the crop coefficients for Fodder Bajra were estimated to the range of 0.35 to 1.07.

Table 5: Weekly Kc values of Fodder Bajra considering crop period from15thStandard Meteorological Week (SMW) to 26th Meteorological Week (MW)having crop periodof 85 day(12th April to 5th July, 2022)

SMW	Week since sowing	Days	X= t/T	Avg.U ₂ , km/hr	Rh _{min} , %	Crop height, m	Modified K _c
15	1	7	0.07	1.8	16	0.08	0.35
16	2	14	0.15	2.17	16.14	0.25	0.37
17	3	21	0.22	1.93	16.14	0.43	0.47
18	4	28	0.29	3.26	18.17	0.61	0.64
19	5	35	0.37	4	21.14	0.79	0.84
20	6	42	0.44	4.89	22.57	0.97	1
21	7	49	0.52	6.1	25	1.11	1.07
22	8	56	0.59	5.47	23.83	1.26	1.05
23	9	63	0.66	3.77	33.43	1.41	0.93
24	10	70	0.74	3.36	38.29	1.57	0.79
25	11	77	0.81	3.44	53.86	1.71	0.64
26	12	84	0.88	2.47	57.71	1.86	0.49

Table 6: Modified K_c values for initial, mid, end season of Fodder Bajra crop for Rahuri region

Crop: Sesame									
SMW	Sowing Date	FAO Valu	K _c es	Modified K _c	dified Crop Period				
SMW15- SMW26	12 th April, 2022	Kcini	0.3	0.35	Initial	18			
		12^{th}	Kc _{mid}	1	1.06	Development	17		
		Kcend	0.35	0.36	Mid	20			
					Late	30			
					Total/Crop Period	85			

The polynomial equation given in figure 7 is used for estimation of daily crop coefficients (figure 8) for Sesame crop. This polynomial relation between t/T and modified K_c has coefficient determination (R^2) of 0.997 representing nearly perfect correlation between them. Values of daily K_c of Fodder Bajra derived from equation (vi) are given in appendix A (Table A-3).

 $y = -62.247x^{6} + 190.93x^{5} - 208.75x^{4} + 91.3x^{3} - 11.842x^{2} + 0.6233x + 0.3422$...(vi) Where, x is (t/T) and y is K_{ct} and

 K_{ct} = The crop coefficient of Fodder Bajra on tth day

t = Day after sowing

T = Total crop growth period in days

The total seasonal water requirement of Fodder Bajra under Rahuri region was found to be 415.78 mm. The average weekly water requirement and irrigation water requirement by surface, sprinkler and drip irrigation methods for different efficiencies ignoring effective rainfall of Fodder Bajra is presented in appendix D.

Figure 8: Plot of days after sowing Vs. K_c derived from polynomial equation for crop growth period of Fodder Bajra on daily basis.